Impact of spillover from white matter by partial volume effect on quantification of amyloid deposition with [11C]PiB PET
نویسندگان
چکیده
High non-specific uptake of [11C]Pittsburgh compound B ([11C]PiB) in white matter and signal spillover from white matter, due to partial volume effects, confound radioactivity measured in positron emission tomography (PET) with [11C]PiB. We aimed to reveal the partial volume effect in absolute values of kinetic parameters for [11C]PiB, in terms of spillover from white matter. Dynamic data acquired in [11C]PiB PET scans with five healthy volunteers and eight patients with Alzheimer's disease were corrected with region-based and voxel-based partial volume corrections. Binding potential (BPND) was estimated using the two-tissue compartment model analysis with a plasma input function. Partial volume corrections significantly decreased cortical BPND values. The degree of decrease in healthy volunteers (-52.7±5.8%) was larger than that in Alzheimer's disease patients (-11.9±4.2%). The simulation demonstrated that white matter spillover signals due to the partial volume effect resulted in an overestimation of cortical BPND, with a greater degree of overestimation for lower BPND values. Thus, an overestimation due to partial volume effects is more severe in healthy volunteers than in Alzheimer's disease patients. Partial volume corrections may be useful for accurately quantifying Aβ deposition in cortical regions.
منابع مشابه
The feasibility of 11C‐PIB‐PET/CT for amyloid plaque burden: validation of the effectiveness of CT‐based partial volume correction
INTRODUCTION Amyloid positron-emission tomography (PET) imaging with 11C-Pittsburgh compound B (PiB) is an effective tool for assessing brain amyloid deposits. PET imaging, however, can suffer from the partial volume effect (PVE). PVE has been corrected using MRI (magnetic resonance imaging) image data. However, correction of the PVE of PET using MRI usually requires two separate procedures, im...
متن کاملCorrection: Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group
Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN), an autosomal dom...
متن کاملCharacterization of PiB binding to white matter in Alzheimer disease and other dementias.
UNLABELLED 11C-Pittsburgh Compound B (11C-PiB) PET has demonstrated significantly higher PiB retention in the gray matter of Alzheimer disease (AD) patients than in healthy controls (HCs). PiB is similarly retained within the white matter of HC and AD brains. Although the specificity of PiB for Abeta plaques in gray matter has been well described, the nature of PiB binding to white matter remai...
متن کاملQuantification and accuracy of clinical [11C]-PiB PET/MRI: the effect of MR-based attenuation correction
The Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Denmark The Dixon-Water-Fat segmentation (DWFS) method is a standard attenuation correction (AC) method in PET/MRI on the Siemens mMR and has demonstrated a systematic quantitative bias in [18F]-FDG-PET/MRI studies of the brain compared to PET/CT. The aim of this study was to evaluate the impact of DWFS-AC in a hyb...
متن کاملIncreased Pittsburgh Compound-B Accumulation in the Subcortical White Matter of Alzheimer's Disease Brain.
Using 11C-Pittsburgh compound B (PiB)-PET and MRI volume data, we investigated whether white matter (WM) PiB uptake in Alzheimer's disease (AD) brain is larger than that of cortical PiB uptake-negative (PiB-negative) brain. Forty-five subjects who underwent both PiB-PET and MRI were included in the study (32 AD patients with cortical PiB-positive and 13 cortical amyloid -negative patients). Ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 143 شماره
صفحات -
تاریخ انتشار 2016